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I. INTRODUCTION

Blockchain, a decentralized, immutable, and transparent dis-
tributed ledger, maintains a continuously growing list of
« transaction records ordered into blocks. At its core lies the
N so-called consensus algorithm, an agreement to validate the
(O correctness of blockchain transactions. By their nature, public
<1 blockchains are resource-intensive technology. For example,
c_“_ in Bitcoin, each node uses the Proof of Work (PoW) algorithm
= toreachaconsensus by competing to solve a puzzle [1]. Being
= less resource-intensive, a private blockchain functions as a
>< distributed but secure ledger for a particular organizational
purpose. A hybrid of both public and private blockchains,
a consortium blockchain is an enterprise-level ledger that
does not contend with issues of creating a resource-saving
global consensus protocol like public chains. This section
covers some important fundamental aspects of blockchain
and overviews related work.

Nakamoto proposed Bitcoin in 2008 [1], heightening in-
terest in the blockchain technology that forms the foundation
for digital currency [2]. The consensus algorithm provides a
process for all nodes to seek and reach a common agreement
in a distributed, increasingly untrusted environment. Since
Bitcoin, many cryptocurrencies have emerged [3]. Among
them, Ethereum [4] is noteworthy for introducing the concept
of smart contracts, which allow contracts to be coded on
the blockchain and use Ethereum as a platform for currency
transactions. Ethereum and Bitcoin share the feature of be-
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ing public and allowing any node to participate in network
activities, with similar consensus mechanisms. In 2015, the
Linux Foundation initiated Hyperledger Fabric [5] as a solu-
tion specifically designed for enterprise-level applications, in
contrast to the open nature of Bitcoin and Ethereum without
any authentication mechanisms. Unlike Bitcoin’s incentive
mechanism, Fabric uses permissioned blockchain to increase
energy efficiency and performance. With the rapid develop-
ment of blockchain technology, more enterprise-level users
have begun considering blockchain to meet their business
needs [6]-[8]. Therefore, exploring effective consensus pro-
tocols for use in consortium blockchains has developed into
a research problem of emerging significance. The release of
Facebook’s Libra project in 2019 [9] led to a new round
of cryptocurrency interest, which in turn further increased
attention from investors and researchers. Among various ap-
plications of blockchain, a notable one is that of digital gov-
ernance. In what is touted as Web 3.0, the prevalent use of
blockchain has accelerated the pace of innovation; thus, the
requirements for consensus have also risen to a new level.
There are a number of surveys on blockchain and applica-
tions [10]-[13]. Similarly, surveys on blockchain consensus
protocols have been published in the literature [14], [15] and
presented on arXiv [16]-[18]. Nguyen et al. [15] provided a
tutorial-style review on distributed consensus protocols that
classifies consensus algorithms into proof-based and voting-
based on the mechanism of reaching consensus. Important
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protocols, such as RBFT, HotStuff, and LibraBFT are not cov-
ered. Salimitari et al. [16] reported on consensus algorithms
and their applicability in the IoT areas. As noted [15], mul-
tiple important protocols, including LibraBFT, are missing.
Consensus protocols such as LibraBFT [9] are relevant not
only because they are suitable for enterprise scenarios but
because they include features of public blockchain consen-
sus protocols, such as incentive mechanisms. The survey of
Ferdous et al. [19] also missed multiple important protocols.
Recently, Badr et al. [20] provided a comprehensive survey
on distributed ledger technologies, but they mainly focused
on the network models, not consensus algorithms.

Given that a comprehensive survey covering all the impor-
tant consensus protocols for consortium blockchains remains
missing, as well as considering the importance of consensus
mechanisms and the rapid development of enterprise-level
blockchains, this paper fills a gap by providing a systematic
taxonomy of enterprise-level blockchain consensus protocols
and a detailed analysis of each protocol, considering aspects
such as reliability, performance, and security. The remain-
ing parts of this paper are organized as follows: Section II
overviews blockchain technology and the notion of consensus
algorithms. Section III presents our proposed taxonomy with
algorithmic workflow for achieving fault tolerance and a
comparative analysis of representative categories. Section IV
addresses the degree of achieved reliability. Section V focuses
on performance, while section VI focuses on security. Finally,
Section VII offers concluding remarks and presents research
challenges and opportunities to motivate future work.

Il. BUILDING BLOCKS

A. BLOCKCHAIN OVERVIEW

The nomenclature of blockchain is derived from its archi-
tecture: each block is linked cryptographically to the pre-
vious block. The genesis block is the first block, and each
block has a set of transactions. Blockchain has the following
characteristics: decentralization, trustlessness, immutability,
and anonymity. Decentralization means there’s no central
trusted third party. Trust is established through consensus.
Blockchain is tamper-proof, and it ensures some degree of
anonymity and privacy-protection technologies like group
signatures, ring signatures, and zero-knowledge proofs [21].

frastructure Layer: Contains hardware, architecture equip-
ment, and deployment environment for blockchain systems.
(2) Network Layer: Includes the node organization method,
communication mechanisms, and transmit protocol. P2P net-
works are used with a flat topology, where nodes are equal,
distributed, and autonomous [22]. (3) Consensus Layer:
Forms the core of the consensus protocol used to ensure
trust and security in the network and to achieve consistency
of nodes participating in the distributed ledger. (4) Data
Layer: To realize traceability and non-tampering, transaction
data is recorded through the blockchain structure and can be
tracked through this chain ledger [23]. For example, each
data block in Bitcoin comprises a block header and a block
body containing a packaged transaction, shown in Figure 2.
The block header contains information such as the current
system version number, the previous block’s hash value, the
random number, the root of the Merkel tree of the block
transaction, and the timestamp [1]. The block body includes
verified transactions and a complete Merkel tree composed of
these transactions [24]. The Merkel tree is a binary tree, where
the bottom layer corresponds to the content of the leaf node.
Each leaf node is the hash value of the corresponding data.
Two neighboring leaves unite to perform a hash computation
that becomes the content of the upper-level node. Recursive
computations form the content of the root node. Blockchain’s
non-tampering is ensured by Merkle tree’s particular data
structure since any modification in the leaf will be passed to
its parent and propagated to the tree’s root [25]. (5) Appli-
cation Layer: Encapsulates various script codes, smart con-
tracts, Decentralized Applications (DApps) and APIs. Scripts
are sets of instruction lists attached to transactions. Smart
contracts are event-driven, stateful computer programs that
run on a shared blockchain data ledger, processing data and
managing on-chain smart assets. DApps are decentralized
and secure applications that run on a distributed network,
utilizing open-source code and storing data and records on
the blockchain using cryptographic technologies. APIs are
provided for development, allowing DApps and third-party
applications to handle smart contracts and retrieve data from
blockchain.

Block N - 1 Block N Block N +1

Previous
Block's Hash | [B1ock Header

Previous Block Header

FIGURE 1. Blockchain Architecture

The framework of the blockchain is shown in Figure 1.
It comprises the following layers from bottom up: (1) In-
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FIGURE 2. An example of block and chain structure
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B. TYPES OF BLOCKCHAIN NETWORKS

Blockchain networks can be categorized as public, consor-
tium, or private in order of decreasing degrees of openness
available for participation by nodes.

Public Blockchain: Referred to permissionless blockchain,

enable any node to enter and exit the network [26]. It is
completely decentralized, and each node can participate
anonymously without registration, authorization, or authenti-
cation [27]. Cryptography-related technologies such as digital
signatures, hashing [28], symmetric/asymmetric keys [29],
and ECDSA [30] are used to ensure that transactions cannot
be tampered with. Economic incentives such as transaction
fees and rewards motivate consensus nodes to participate in
the consensus process.

Private Blockchain: Known as the permissioned chain,
is generally not open to the outside world and is only used
by individuals or institutions [11]. Access to read and write
on the private blockchain is governed by rules established
by private organizations. Private chains prioritize preventing
internal and external security attacks on data and providing
users with a secure, tamper-proof, and traceable system. They
offer a certain degree of centralized control instead of com-
plete decentralization, sacrificing some of the latter’s benefits
for better performance compared to public chains.

Consortium Blockchain: A hybrid architecture compris-
ing features from public and private blockchains in which par-
ticipation is limited to a consortium of participating members
[14]. Each node may refer to a single organization or institu-
tion in the consortium. The number of nodes is determined by
the size of the pre-selected participants in the blockchain. For
example, a financial blockchain is designed for a consortium
of 30 financial institutions and allows 30 nodes in this con-
sortium blockchain. The number of nodes required to reach
a consensus depends on which algorithm the consortium
blockchain uses. The consortium chain accesses the network
through the gateways of member institutions and generally
provides members’ information authentication, data read and
write permission authorization, network transaction monitor-
ing, member management, and other functions. Each member
can have permissions assigned by the consortium to access the
ledger and validate the generation of blocks. The Hyperledger
project is an example of consortium blockchain architecture.
Since there are relatively few nodes participating in the con-
sensus process, the consortium blockchain generally does not
use the POW mining mechanism as the consensus algorithm.
Consortium blockchain requirements for transaction confir-
mation time and transaction throughput are, thus, different
from those of public blockchains.

C. CONSENSUS ALGORITHMS

A consensus algorithm ensures the integrity of a distributed
ledger by facilitating agreement among nodes on transaction
content and order. Without it, data inconsistency can occur,
leaving the ledger vulnerable to manipulation. Consensus al-
gorithms can address several blockchain problems, including:
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The CFT Problem: CFT consensus algorithms only guar-
antee a blockchain’s reliability and resiliency to blockchain
node failure [15]. Also known as non-Byzantine errors, node
failures can be caused by failed hardware, crashed processes,
broken networks, or software bugs. CFT cannot address sce-
narios involving malicious activities, referred to as Byzantine
errors. When nodes intentionally and maliciously violate con-
sensus principles, e.g., tampering with data, a CFT algorithm
cannot guarantee the system reliability. Thus, CFT consensus
algorithms are mainly used in closed environments such as
enterprise blockchains. Current mainstream CFT consensus
algorithms include Paxos and Raft. The latter is a derivative
of the former and a simplified consensus algorithm designed
to be more suitable for industry implementation.

The BFT Problem: Unlike CFT problems that deal with
crashes or failures, a Byzantine fault is caused by malicious
nodes sending incorrect information to prevent other nodes
from reaching consensus. In distributed systems, the Byzan-
tine General’s Problem translates into an inability to maintain
consistency and correctness under certain conditions. The
Byzantine Generals Problem, proposed by Lamport [48], is
described as follows. Several Byzantine armies are camping
outside an enemy city, and a general commands each army.
The generals can only communicate with each other by dis-
patching a messenger who carries messages back and forth
[48]. After assessing the enemy’s situation, they must agree
on an identical action plan. However, some traitors among
these generals may prevent loyal generals from reaching an
agreement. The generals require an algorithm to guarantee
that all loyal generals reach a consensus, even if a small
number of traitors cheat. Let v(i) represent the information

Case 1: A lieutenant is a traitor Case 2: The Commander is a traitor
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Ci
"Attack"

"He said 'retreat™

FIGURE 3. Byzantine General Problem

sent by the i-th general. Each general draws up a battle plan
based on v(1), v(2), ---, v(n), where n is the number of
generals. The problem can be described in terms of how a
commanding general issues orders to lieutenants. Therefore,
the problem will be transformed into the following Byzantine
General Problem: A commander issues an order to his n — 1
lieutenants such that: (a) IC1. All loyal lieutenants obey the
same order. (b) IC2. If the commander is loyal, each loyal
lieutenant must obey the order. IC1 and IC2 are conditions for
interactive consistency, which is a configuration that includes
the number of generals in a final agreement [48].

One case of the Byzantine Generals Problem is shown
in Figure 3. Here, the Commander and Lieutenant 1 are
loyal, and Lieutenant 2 is a traitor. The Commander issues
an attack order to all lieutenants. Lieutenant 2 is a traitor, and
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TABLE 1. Mainstream Platforms and Consensus Algorithms

Blockchain Platforms

Consensus Algorithm

Use Cases Areas

Smart Contract

DApps

Open Source

Open APIs

Antchain HoneybadgerBFT [31] Multi-Purpose
Cardano Ouroboros [32] Cryptocurrency
Enterprise Ethereum Customized Multi-Purpose
FISCO BCOS Raft [33], PBFT [34] Multi-Purpose
Google Chubby Paxos [35] Distributed System
Hedera Hashgraph [36] Cryptocurrency
Hyperledger Besu QBFT, IBFT [37] Multi-Purpose
Hyperledger Burrow Tendermint [38] Multi-Purpose
Hyperledger Fabric PFBT, Raft [33], Kaftka [39]  Supply chain
Hyperledger Firefly IBFT [37] Multi-Purpose
Hyperledger Indy RBFT [40] Identity Management
Hyperledger Iroha YAC [41] Multi-Purpose
Hyperledger Sawtooth PoET [42] Multi-Purpose

IPFS private Raft [33] Data Storage

Libra LibraBFT [9] Cryptocurrency
MOBI MOBI Consensus IoT

Neo dBFT [43] Cryptocurrency
Quorum IBFT, Kafka [39] Financial

R3 Corda Customized Multi-Purpose
Ripple RPCA [44] Cryptocurrency, Financial
Stellar SCP [45] Cryptocurrency, Financial
Symbiont BFT-SMART [46] Fintech

Tendermint Tendermint [38] Multi-Purpose
TradeLens Raft [33] Supplychain

Trusted IoT Alliance Customized IoT

VeChain Proof of Authority [47] Supplychain

Zookeeper

Paxos [35], Kafka [39]

Distributed System
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he/she deceives Lieutenant 1 by sending a tampered message
called “‘retreat". Since Lieutenant 1 does not know whether
the Commander or Lieutenant 2 is a traitor, he/she cannot
judge which message includes the correct information and,
thus, cannot reach a consensus with the loyal Commander. In
another case, shown in Figure 3, the two lieutenants are loyal,
and the Commander is a traitor. The Commander issues differ-
ent orders to the two lieutenants. Lieutenant 2 conscientiously
delivered the information of the Commander to Lieutenant
1. Lieutenant 1 cannot judge which information is correct,
resulting in loyal lieutenants not reaching a consensus.

If there are f traitors and the total number of generals n
is less than 3f + 1, the Byzantine Generals Problem has
no solution. Lamport [48] proposed a solution to solve the
Byzantine Generals Problem in exponential time O(r/ ) if the
adversary mode is n = 3f + 1. This original BFT algorithm is
computationally expensive to implement, and a practical BFT
algorithm is introduced later.

The adversary model represents a malicious entity that
aims to prevent non-malicious entities from achieving their
goal [49]. An adversary model imposes a specific limit on the
percentage of computing power or property that an adversary
can hold, generally represented by f for the number of adver-
saries and n for the total number of nodes. For example, if
a BFT algorithm’s adversary model is n = 3f+1, it implies
that if the algorithm can tolerate f faulty replicas, the system
requires a minimum number of n = 3f + 1 replicas.

D. CONSENSUS ALGORITHM CLASSIFICATION

One way of classifying consensus algorithms is by their
approach to making final decisions to reach consensus [15].
The first category is proof-based consensus algorithms, since
a node in this category has to compete with other nodes
and prove that it is more qualified than others to commit
transactions. PoW [1], PoS [50], Proof of Authority (PoA)
[51], Proof of Elapsed Time (PoET) [52], and Proof of
Space (PoSpace) [53] are algorithms of this category. The
other category is that of voting-based algorithms since the
commitment depends on which committed result wins the
majority of votes. Paxos [35], Raft [33], PBFT [34], RFBT
[40], RPCA [44], SCP [45], Tendermint [54], and HotStuff
[55] belong to this category. The first group of consensus
algorithms is proof-based, while the second group is voting-
based. Another way of classifying consensus algorithms is by
the design principle of fault tolerance. Nodes can suffer from
non-Byzantine errors (also known as crash faults), which is
exemplified by situations where the node fails to respond.
Alternatively, nodes can forge or tamper with the informa-
tion and respond maliciously, causing Byzantine Fault. Thus,
consensus algorithms may be classified as being designed for
Crash Fault Tolerance (CFT) or Byzantine Fault Tolerance
(BFT). This classification method only focuses on the original
design principle. Most BFT-based consensus algorithms can
tolerate either crash fault or Byzantine fault. Since the design
principle of algorithms in the previous proof-based family is
different from fault tolerance, those proof-based families will
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FIGURE 4. Proposed Taxonomy for Assessing Consensus

be excluded from this classification. Paxos [35], Raft [33],
and Zab [56] belong to the category of CFI-based consensus
algorithms. A number of variants of PBFT [34] algorithms,
such as RBFT [40], SBFT [57], BFT-SMART [46], DBFT
[43], and HotStuff [55] form a collection in the category of
BFT-based consensus algorithms. Another group of consen-
sus algorithms, forming a collection in the same category,
uses Byzantine Federated Agreement (BFA) [45] for voting,
such as RPCA [44] and SCP [45].

In the next section, we will propose a more comprehensive
taxonomy, aiming to better capture the nuances and complex-
ities of the evolving landscape of consensus algorithms.

IIl. TAXONOMY OF CONSENSUS MECHANISMS
Mainstream consortium blockchains and distributed systems
[10]-[20] considered in this paper are shown in Table 1
along with their consensus algorithms, use cases areas, and
availabilities for smart contract, DApps, open source, and
open APIs. From Table 1, a representative list of consensus
algorithms used in mainstream consortium blockchains are
selected based on their methodologies of achieving consen-
sus. Figure 4 shows our proposed taxonomy of consensus
algorithms.

A. PAXOS AND DERIVATIVES

Paxos [35] is a classical and widely used consensus algorithm
in distributed systems. Due to its efficiency and usability, its
derivatives are adopted in many blockchain platforms.

1) Paxos

A fault-tolerant consensus algorithm that relies on message
passing in a distributed system [35]. It divides nodes into three
roles: proposer, acceptor, and learner. Each node can have
multiple roles simultaneously. A proposer is responsible for
presenting a proposal and awaiting acceptors’ responses. An
acceptor votes on the proposal. A learner is informed of the
proposal’s result but does not participate in voting. Paxos en-
sures the proposal’s uniqueness with a proposal number and
content with a value. When more than half of the acceptors
approve a proposal, it is considered Chosen. Paxos ensures
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safety and liveness, ensuring the proposed value is chosen and
the proposal is completed within a limited time.

Paxos execution is divided into two phases, as shown in
figure 5. In the Prepare phase, the proposer sends a Prepare
request with a proposal number to more than half of the
acceptors in the network to determine whether a majority is
prepared to accept the proposal. After receiving the proposal,
the acceptor stores the largest proposal number it has received
and returns a Promise message to the proposer if the proposal
number is greater than the saved maximum proposal number.
The acceptor promises not to accept any proposal with a
number less than the proposal number that has already been
received. In the Accept phase, the proposer broadcasts an
Accept request with the proposal if it receives more than half
of the responses as Promise messages. The request contains
a proposal number and the value that the node would like
to propose. If the response does not contain any proposal,
the proposer determines the value. If the response message
contains a proposal, the value is replaced by the value in the
response with the largest proposal number. After an acceptor
receives the Accept request, it accepts the proposal and up-
dates the accepted maximum proposal if the proposal number
is not less than the maximum proposal number promised by
the acceptor. If a majority of acceptors accept the proposal,
the value is Chosen, indicating consensus has been reached.

Client
Proposer
Replica 0

Replica 1

Replica 2

Phase-1a Propose  Phase-1b Promise Phase-2a Accept

Phase-2b Accepted

FIGURE 5. Paxos two phases.

2) Raft

Motivated by Paxos, Raft is designed for ease of understand-
ability and implementability for industry applications [33].
Its core premise is that servers start from the same initial state
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and execute a series of command operations in the same order.
Its goal is to achieve a consistent state, and therefore, it uses
the log method for synchronization, a consistent algorithm
for managing replicated logs. Raft divides nodes into three
mutually convertible roles: leader, follower, and candidate,
with only one leader in a cluster of at least five nodes. The
leader handles client requests, replication logs, and com-
munication with followers. Initially, all nodes are followers,
which passively respond to Remote Procedure Call (RPC)
requests from the leader. Followers do not communicate with
each other but instead respond to log replication and election
requests from the leader and candidate nodes, respectively. If
a follower receives a request from a client, it forwards it to the
leader. A candidate initiates an election vote when the leader
becomes inactive, and one or more nodes may switch from
follower to candidate. Once a candidate wins the election, it
becomes the new leader and can revert to a candidate if a new
leader is elected but then fails.

Raft runs in two phases. The first phase is leader election,
where a leader sends heartbeat messages to followers to
maintain its authority. If a follower does not receive the
heartbeat within an Election timeout period, it switches to
a candidate role and starts an election process, signaling that
the leader has failed [33]. Then, it increases its term, sends
RequestVote RPC to other servers, and waits for results. If a
candidate wins the election, it becomes the leader. If another
server wins the election, the candidate becomes a follower.
If no one wins, the election is reinitiated. The second phase
is log replication, where the leader accepts client requests,
updates log, and sends a heartbeat to followers to synchronize
leader’s log.

B. PBFT AND DERIVATIVES

PBFT is the practical BFT algorithm for enterprise-level dis-
tributed systems. Numerous variants are proposed to improve
its ability to solve more challenges in blockchain.

1) Practical Byzantine Fault Tolerance (PBFT)
It is a consensus algorithm based on state machine replication
[34] where services are replicated on different nodes in a
distributed system. Each copy of the state machine saves
the state of the service and the operations. PBFT reaches
consensus through three phrases: Pre-prepare, Prepare, and
Commit. In PBFT, there is one primary node out of n nodes,
and others are backup. If the primary node fails, the backups
nodes initiate a view-change to select a new primary node.
The process of reaching consensus in PBFT is as follows:
(a) Propose: The client uploads the request message m to
the primary node and replicas. (b) Pre-prepare: The primary
node receives the request message m and generates a Pre-
prepare message (Pre-prepare, H(m), s, v), where H(m) is
a one-way hash function, s is the message sequence num-
ber, and v represents the current view. The primary node
signs the message with its private key and sends it to repli-
cas. (c) Prepare: Upon receiving the Pre-prepare message,
replicas verify the message and create a Prepare message

6

(Prepare, H(m), s, v) and broadcast it to the network. If a
replica node receives 2f + 1 valid Prepare messages, it
generates a prepared certificate. (d) Commit: If a replica
has a prepared certificate, it broadcasts a Commit message
(Commit, s, v) and stores the message m in the local log. If a
replica receives 2f + 1 valid Commit messages, it generates
a committed certificate, indicating the message has been suc-
cessfully committed. (e) Reply: Once a node receives 2f + 1
valid Commit messages, it sends the committed certificate
and the message m to the client. PBFT includes a view-change
protocol in case of primary node failure, where a replica
triggers a view change to elect a new primary node if it has not
received a response from the current primary after a timeout,
ensuring liveness.

Client
Primary
Replica 0

Replica 1

Replica 2
(1) PBFT Request

Pre-Prepare Prepare Commit Reply
r

Client

Primary

Replica 0

Replica 1

Replica 2
(2) RBFT  Request

Propagate  Pre-Prepare Prepare Commit Reply

Client

Primary

Replica 0

Replica 1

Replica 2
(3) BFT-SMART  Request

Client

Primary

Replica 0 --------------csmmmrecia e -

Replica 1 ---------=-==-----mmmmmmmoo o -

Replica 2 ======-enmoommmmcccnnccccicnnns
(4) HotStuff

Request Pre-Prepare Prepare Commit

FIGURE 6. Processes of PBFT algorithm and its derivatives

2) Redundant Byzantine Fault Tolerance (RBFT)
A variant of PBFT that improves robustness by using a multi-
core architecture [40]. In RBFT, each node runs f + 1 PBFT
protocol instances in parallel, with only one instance serving
as the master and the rest as backup. Each instance has its own
nreplicas, and in f 4 1 instances, each node can have at most
one primary.

RBFT uses a communication process similar to PBFT in
the consensus protocol phase, but adds a propagate phase
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before the Pre-prepare phase to ensure all correct nodes
eventually send the request to the next phase, as shown in
Figure 6. f 4+ 1 PBFT instances must receive the same client
request for correctness, which is achieved by forwarding the
message to each other. Once a node receives 2f + 1 requests
from a client, it sends the request to f + 1 instances and moves
to the next phase, following the 3-phase process similar to
PBFT [34], and is represented in steps 3, 4, and 5 in Figure
6. The algorithm is performed by the f + 1 instances dur-
ing the consensus protocol, and the result is returned to the
client through MAC authentication messages. When the client
receives f + 1 valid and consistent replies, it accepts these
replies as the result.

RBFT improves upon PBFT by implementing a monitor-
ing mechanism and a protocol instance change mechanism
to promote robustness [40]. Each node runs a monitoring
program to monitor the throughput of all f + 1 instances,
and if 2f + 1 nodes find that the performance difference
between the master and the best backup instance reaches a
certain threshold, then the primary of the master instance
is considered as a malicious node. A new primary is then
selected, or the primary in the backup instance with the best
performance is chosen, and it is elevated to master. To update
all instances’ primaries, each node maintains a counter to
record the change information of each instance. If a node
needs to change the primary, it sends an Instance-change
message with a MAC authenticator to all nodes. After re-
ceiving the incoming Instance-change message, each node
verifies the MAC and compares it with its counter. If the
counter is larger, it discards the message. Otherwise, the
node checks whether it also needs to send the Instance-
change message by comparing the performance of the master
and backup. If 2f + 1 valid Instance-change messages are
received, the counter is incremented by one, and this starts
the view-change process to update all instances’ primaries,
including the master’s.

3) BFT-SMART
A state machine replication library written in the Java [46].
It supports state transfer services to repair a failed node,
add/remove replicas through a Trusted Third Party client,
and access other nodes to obtain the latest replica status.
The system ensures stable error recovery from f faulty nodes
by storing each node’s operation logs on other disks. BFT-
SMART also divides nodes into leaders and backups and
employs a reconfiguration protocol [58] similar to the view-
change protocol in PBFT to handle failure.

The consensus process in Mod-SMaRt [59] is based on
a leader-driven algorithm [60] with three phases: Propose,
Write, and Accept, as shown in Figure 6. A leader is elected
from the network. When a client initiates a request, it sends a
Request message containing the client serial number, digital
signature, and operation request content to all nodes and waits
for a response. In the normal phase, the leader verifies the
correctness of the received Request message. After verifica-
tion, the leader accepts the message, assigns a serial number,
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and sends the Request message to the replicas. As long as
a replica accepts the message and forwards it, other nodes
will also receive and send the Write message to all nodes,
including itself. When a node receives 2f Write messages, the
node broadcasts an Access message to all nodes, including
itself. When a node receives 2f + 1 Access messages, the
request is executed. The protocol stores content of the series
of request operations and the encrypted certificate in each
node’s log and replies Access to client.

In BFT-SMaRt, if a node experiences two timeouts, it
enters the synchronization phase and the reconfiguration pro-
tocol re-elects the leader node. During first timeout, the con-
sensus and reconfiguration processes can execute simultane-
ously. The Request message is automatically forwarded to
all nodes after the first timeout, and a Stop message is sent
to other nodes after the second timeout. Once a node receives
more than f Stop messages, it starts the next reconfiguration
phase immediately. After the leader election, all nodes send a
Stopdata message to the new leader. If the leader accepts at
least n —f valid Stopdata messages, it sends a Sync message
to all nodes. Replicas start to synchronize if the leader is valid.

4) HotStuff

A partially synchronized network [61] with an adversary
model of n = 3f + 1. It uses a parallel pipeline to process
a proposal, which is equivalent to combining the prepara-
tion and commitment phases of PBFT. The original proposal
includes two implementations of HotStuff, Basic HotStuff,
and Chained HotStuff. The Basic HotStuff protocol forms the
core of HotStuff, which switches between a series of views.
The views switch according to a monotonically increasing
number sequence. A unique consensus leader exists within
each view. Each replica node maintains a tree structure of
pending commands in its memory. Uncommitted branches
compete, and only one branch in a round will be agreed upon
by the nodes. In the HotStuff protocol, branches are commit-
ted as the view number grows. Voting in HotStuff uses the
cryptographic term Quorum Certificate (QC), where each
view is associated with a QC that indicates whether enough
replicas have approved the view. If a branch is confirmed
by a replica, it signs the branch, creates a partial certificate
[61], and sends to the leader. The leader collects n — f partial
certificates, which can be combined into a QC. A view with a
QC means that it received the majority votes of the replicas.
The leader collects signatures from n — f replicas by using
threshold signatures [57], [62]. The process of collecting
signatures consists of three phases: Prepare, Pre-prepare,
and Commit. Moreover, the entire algorithm consists other
two phases: Decide and Finally, as shown in Figure 6.

(1) Prepare. The leader denoted by the current high-
est view designated as highQC, initiates a proposal for
highQC, encapsulates it into a Prepare message with content
(Prepare, CurProposal, HighQC), and broadcasts it to all
replicas. Replicas will decide whether to accept the proposal
or not, and then return a vote with partial signature to the
leader if the proposal is accepted. (2) Pre-commit. When
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the leader receives votes from n — f replicas for the current
proposal, it combines them into PrepareQC, encapsulates
PrepareQC into a Pre-commit message, and broadcasts it to
all replicas. The replica votes after receiving the above pro-
posal message and returns the vote to the leader. (3) Commit.
When the leader receives the Pre-commit votes from n — f
replicas, it merges them into PrecommitQC, encapsulates a
PrecommitQC into a Commit message, and broadcasts them
to all replicas. The replica votes after receiving the proposal
message and returns the Commit vote to the leader. To ensure
the safety of the proposal, the replica is locked by setting its
LockedQC to PrecommitQC. (4) Decide. When the leader
receives the Commit votes from n—f replicas, it merges them
into one CommitQC and then uses the Decide message to
broadcast it to all replicas. After receiving this message, the
replica confirms and submits the proposal in the CommitQC,
executes the command, and returns it to the client. After
this, the replica increases the ViewNumber and starts the
next view. (5) Finally. If the system moves to the next view,
each copy sends a message to the next view’s leader with the
message (New-view, PrepareQC).

The processes in each phase of Basic HotStuff are very
similar to each other, as shown in Figure 6. A modified
version of HotStuff, called Chained HotStuff, was proposed
[55] to optimize and simplify Basic HotStuff. In the Chained
HotStuff protocol, the replicas’ votes in the Prepare phase
are collected by the leader, and stored in the state variable
GenericQC. Then, GenericQC is forwarded to the leader
of the next view, essentially delegating the next phase’s (the
Pre-commit phase) responsibilities to the next view’s leader.
Thus, instead of starting its new Prepare phase alone, the
next view’s leader actually executes the Pre-commit phase
simultaneously. Specifically, the Prepare phase of view v+ 1
also acts as the Pre-commit phase of view v. The Prepare
phase of view v 4 2 acts as both the Pre-commit phase of
view v 4 1 and the Commit phase of view v.

FIGURE 7. Chained HotStuff is a pipelined Basic HotStuff where a QC can
serve in different phases simultaneously. [55]

Figure 7 shows that a node can be in different views si-
multaneously. Through a chained structure, a proposal can
reach consensus after three blocks, resembling a Three-Chain
shown in figure 8. An internal state converter enables au-
tomatic switching of proposals through GenericQC. The
chained mechanism in Chained HotStuff reduces cost of com-
munication messages and allows pipelining of processing.
In the implementation of Chained HotStuff, if a leader fails
in obtaining enough QC, then it may appear that the view
numbers of a node are not consecutive. This is solved by
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adding dummy nodes, as shown in Figure 8, where a dummy
node is added to force vg, itself, and vg to form a Three-Chain.

FIGURE 8. The nodes at views v, vs, vg form a Three-Chain. The node at
view vg does not make a valid One-Chain in Chained HotStuff. [55]

HotStuff achieves O(n) message authentication complex-
ity by improving the distributed consistency algorithm’s effi-
ciency using threshold signatures, parallel pipeline process-
ing, and linear view changing. Compared to PBFT, HotStuff
can reach consensus pipelining without a complex view-
change mechanism and improves consensus efficiency.

5) LibraBFT

As a variant of HotStuff, LibraBFT introduces several
changes to meet various business requirements. One of the
changes is the introduction of epochs, which allows for
consensus node replacement and support for incentive and
penalty mechanisms [63]. With the economic incentives and
penalties, nodes are encouraged to participate in the voting
process and penalized if they violate voting constraints or
submit conflicting proposals. Another change is to address
the problem of unknown upper bounds on message latency
in HotStuff, which only requires partial synchronization [64].
The view-change in HotStuff is not time-bound and relies on
the status of the last view, which can result in variable confir-
mation latencies. To address this, LibraBFT uses pacemaker
[63] to ensure that confirmation latency is lower than an upper
bound.

C. FEDERATED BYZANTINE AGREEMENT

The algorithms in this category differ from PBFT variants
in that a group of nodes can choose one or more nodes as
representatives.

1) RPCA

Uses pre-configured validators to vote on transactions for
consensus [44]. After several rounds of voting, if a transaction
receives a threshold (usually 80%) of votes, it will be recorded
in the ledger. Nodes maintain a subset of validators as a
list called Unique Node List (UNL). Non-validators, known
as tracking servers, forward transaction information and re-
spond to client requests but don’t participate in consensus. A
validator and tracking server can switch roles, and inactive
validators are removed from the UNL.

The process of RPCA is shown in Figure 9. The client
initiates a transaction and broadcasts it to the network. Val-
idators receive the transaction data, store it locally, and verify
it. Invalid transactions are discarded, while valid transactions
are integrated into the candidate set of transactions. Validators
periodically send their candidate sets as proposals to other
nodes. Once a validator receives a proposal, it checks whether
the sender is on the UNL. If not, the proposal is discarded.
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Otherwise, the validator stores the proposal locally and com-
pares it with the candidate set. The transaction obtains one
vote if it is the same as in the candidate set. If the transaction
fails to reach 50% of the votes within a certain period [65], it
returns to the candidate set and waits for the next consensus
process. If it reaches a threshold denoted by 50% of votes,
it enters the next round and is re-sent as a proposal to other
nodes, with the threshold raised. As the number of rounds
increases, the threshold continues to increase until the trans-
action reaches 80% or more of the votes, at which point the
validator writes it into the ledger.

 Validator 0

TX set TX proposal
(verified)

TX proposal
(from other nodes)

Commit to
Ledger

Client i 1 i 2 i 3 i 4

FIGURE 9. Ripple’s RPCA Consensus Algorithm

2) Stellar Consensus Protocol (SCP)

A distributed consensus algorithm designed around state ma-
chine replication and does not require miners but a distributed
server network to run the protocol [45]. SCP is based on
the Federated Byzantine Agreement (FBA) and Federated
Byzantine Fault Tolerance (FBFT) protocols. The FBA in-
troduces the concept of a quorum slice, which is a subset of
nodes that a given node chooses to trust. A quorum is a set,
and each non-faulty member of it contains at least one quorum
slice. The UNL in RPCA is similar to a quorum slice. In
Stellar, the ledger will not update the transaction until 100%
of nodes in a quorum slice agree, unlike in Ripple which
requires only 80% agreement. There are two mechanisms
in the quorum slice model, federated voting and federated
leader election. In voting, nodes vote on a statement and use a
two-step protocol to confirm it. If each quorum of non-faulty
nodes v; intersects each quorum of non-faulty nodes vy in
at least one non-faulty node, then v; and vy are considered
intertwined, and conflicting transactions will not be approved
[66]. In leader election, nodes pseudo-randomly select one or
a small number of leaders in the quorum slice.

SCP s a global consensus protocol that includes three com-
ponents: a nomination protocol, a ballot protocol, and a time-
out mechanism. The nomination phase proposes new values
as candidates for reaching an agreement using the statement
Nominate x, where x is a valid candidate consensus value.
Each node that receives these values votes for a single value
from among received ones. The nomination phase generates
the same set of candidate values as a deterministic combina-
tion of all values on each intact node [66]. After the successful
execution of the nomination phase, the nodes enter the ballot
phase, which uses federated voting to commit or abort the
values. In FBA, as shown in Figure 10, the three-step process
involves a node broadcasting a valid statement a and then
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accepting it if it doesn’t conflict with any previously accepted
values. If all members of the node’s quorum set accept a, it
is rebroadcasted. Finally, a is confirmed if each node in the
node’s quorum accepts it, and the node confirms it as well.
However, there may be a stuck state since the node cannot
conclude whether to abort or commit a value. SCP uses two
statements Prepare and Commit, and a series of numbered
ballots, to avoid stuck votes in the federated voting process. A
statement Prepare(n, x) states that no value other than x was
or will ever be chosen in any ballot < n. Another statement
Commit(n, x) states that value x is chosen in ballot n. A node
has to confirm the Prepare(n, x) statement before voting for
the Commit(n, x) statement. Once Commit is confirmed, the
value x can be output by the node. SCP provides liveness
by using these two statements when the node determines a
stuck ballot has been committed. The timeout mechanism is
a crucial part of SCP. If the current ballot n appears to be
stuck, a new round of federated voting begins on a new ballot
with a higher counter n + 1. Unlike the Byzantine agreement,
SCP allows participating nodes to determine their quorums,
making it a significant difference. SCP utilizing FBA avoids
stuck states and enables low latency and flexible trust.

quorum votes for/accepts @ m Km accepts a
a is valid voted a accepted a confirmed a
m >ﬁﬁch slice accepts a
voted a

FIGURE 10. Federated voting process

D. RANDOMIZED CONSENSUS MECHANISMS

The algorithms in this category leverage aspects of random-
ized mythologies to choose nodes that have decisive effects
on reaching consensus in the network.

1) PoET

Proof of Elapsed Time [42] is an efficient consensus proto-
col utilizing a Trusted Execution Environment (TEEs), i.e.,
Intel SGX-enabled CPUs [67], implemented in Hyperledger
Sawtooth Project [52]. Although PoET looks like a compet-
itive consensus algorithm (i.e., PoW) by name, it essentially
selects the validator node by a randomized waiting time, in
contrast to PoW, where all the nodes compete to solve a
cryptographic puzzle and mine the next block. As a result,
significantly fewer computational resources are required. In
this mechanism, each node waits for a particular random
time 7 which satisfies a predefined probability distribution
function F. The first node to finish the waiting time becomes
the primary node. The other nodes verify that the primary
node has indeed waited for the particular random time 7 in
three steps: (a) Proof of waiting time is generated with the
assistance of SGX while generating the block on the primary
node. (b) The primary node broadcasts the generated proof
along with the block to other nodes. The other nodes will pro-
duce block and waiting time verification. (c) A probabilistic
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statistical verification is applied to check whether the node’s
waiting time meets the predefined probability distribution F.
The PoET consensus algorithm relies on the hardware for
trust so that the blockchain system does not need to spend
significant computing power and achieves fairness.

2) Ouroboros

Based on the PoS [50], Ouroboros randomly chooses a stake-
holder and authorizes the selected stakeholder permission to
generate the block in a certain period [32]. Ouroboros divides
time into epochs, with each epoch containing multiple slots,
and at most, one block will be generated per slot. For each
slot, a leader is elected, generating a block and passing it to
the next slot leader. The process of the slot leader election
is randomized, and it has been proven as an unpredictable
process. It isdenoted as F(S, p, sI;) — S;. Where S is the set of
candidate stakeholders, p is the random seed, s/; denotes the j-
th slot in the epoch, and S; the selected node. The randomized
algorithm selects the slot leader from the candidate set S for
each slot. During the epoch cycle, S and p remain unchanged
until the of the cycle. If a new epoch starts, then a new p
is generated along with an updated S. Each node executes
the random function F to check who is the slot leader of the
current slot based on the seed p of the current epoch. If the slot
leader is itself, then the node will combine the transactions
and create a new block; otherwise, it waits for the slot leader to
create the block, broadcasts it, and verifies the received block.
If a node has not received a broadcast for a long time (beyond
the time of one slot), it considers that no block is generated
for current slot. This process is repeated in current epoch until
all slots are finished.

In Ouroboros, the random seed p for each epoch is gen-
erated by a secure multi-party computation protocol (MPC),
which uses a publicly verifiable secret-sharing algorithm [68]
to guarantee the generation of bias-resistant random num-
bers in the presence of adversaries. Similar to the voting
algorithms, the randomly generated leader node reduces re-
source consumption. However, unlike the voting algorithms,
in which the generation of leaders requires network commu-
nications between nodes, the randomized algorithm uses a
random algorithm to generate leaders without communica-
tion, which shortens the running time for reaching consensus,
improves efficiency, and enhances scalability.

3) HoneyBadgerBFT (HB-BFT)

HB-BFT [31] achieves distributed consensus consistency in
asynchronous networks without requiring any time assump-
tions, and solves the transaction censorship problem through
the use of threshold encryption. In each consensus round, the
protocol operates on data of size B, assuming n nodes in the
network. The primary process of HB-BFT is as follows: (a)
Each node collects transaction data in its own transaction data
buffer. Before each round, the node removes the first B/n
transactions from the buffer. HB-BFT then divides a block
into n copies, each containing different transactions. After
that, these copies will be sent to replica nodes. Then, replica
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nodes will exchange the remaining n — 1 copies to fully use
the bandwidth between replica nodes and ease the broadcast
pressure of the primary node. (b) Each replica node randomly
selects transactions to verify, sign, and broadcast with thresh-
old encryption to improve transaction throughput. As HB-
BFT is an asynchronous consensus protocol, the transactions
received by each replica node are asynchronous and random,
and their arrival order can vary. After receiving transaction
information, each node stores it in a local cache pool and ran-
domly selects several transactions to process. The node then
verifies, signs, and broadcasts the selected transactions with
threshold encryption using Reliable Broadcast (RBC). The ci-
phertext data is then generated and broadcasted by the replica.
Eventually, each node combines the different subsets of trans-
actions received to form the complete set of transactions
contained in the block of that view. (c¢) The final confirmation
of required transactions is achieved through Asynchronous
Binary Byzantine agreement (ABA). The primary node forms
a transaction set ciphertext from encrypted data received from
nodes and initiates ABA consensus. A consensus round de-
termines the final confirmed binary value, which determines
which transactions will be approved. Nodes can confirm the
Asynchronous Common Subset (ACS) subcomponent after
eliminating invalid and duplicate transactions based on the
received value V. (d) Transaction data threshold decryption.
When the ABA consensus is completed, i.e., the transaction
set’s ciphertext data is confirmed, the nodes run the threshold
decryption algorithm. As long as at least f + 1 nodes complete
the decryption, the plaintext data in the set can be restored,
and the transaction is confirmed. There are two advantages to
this strategy: first, it prevents adversaries from understanding
the transaction selection strategy to interfere or attack; and
second, although the order of transactions received by each
node may not be consistent, most of them may be in the same
order under similar network conditions, and random selection
instead of all sequential selection can avoid a large number of
duplicates.

4) Dumbo

Proposed as the first practical asynchronous BFT protocol
[69] based on HB-BFT and the motivation to address per-
formance bottleneck of HB-BFT due to the number of ABA
instances. Because each node has to run N instances of ABA
in each round, and each instance has to verify O(n?) threshold
signatures, HB-BFT consumes a lot of computing resources.
To improve the efficiency of asynchronous consensus by
reducing the number of ABA instances in each round, Dumbo
uses two atomic broadcast protocols: (1) Dumbol which
reduces the number of instances running ABA from N to k
by choosing a committee of & members. By leveraging an
added coin-tossing protocol, Dumbol can randomly elect a
committee of k members, with a high probability that at least
one of the k members is honest. (2) Dumbo2, which reduces
number of ABA to a constant running time by using the
Multi-value Validated Byzantine Agreement (MVBA) [31].
To apply MVBA, a provable reliable broadcast (PRBC) is

VOLUME 11, 2023



Wei et al.: SoK: A Taxonomy for Critical Analysis of Consensus Mechanisms in Consortium Blockchain

Assessment

Metrics Reliability

— Communication Complexity

— Scalabilitys
— Decentralization Degree
— Network Models

Performance Security
Latency L Fault Tolerance
Throughput

Resource Consumption

FIGURE 11. Assessment Metrics for Proposed Taxonomy

implemented by levering threshold signature on the RBC
index. As aresult, only three consecutive ABA instances need
to be performed.

E. ASSESSMENT METHODOLOGY

Selected consensus algorithms are compared along the fol-
lowing three dimensions that form the backbone of scalable
solutions in blockchain technology: (1) Reliability is mea-
sured by communication complexity, scalability, and decen-
tralization. (2) Performance is measured by latency, through-
put, and resource consumption. (3) Security is measured by
fault tolerance. Figure 11 shows comparison methodologies
for proposed taxonomy. The Assessment for selected algo-
rithms will be presented in section IV, V, and VL.

IV. RELIABILITY

This section analyses the network reliability of consensus
algorithms along the metrics of communication complexity,
scalability, decentralization degree, and network models. Ta-
ble 2 shows the comparison of above metrics in selected
consensus algorithms.

Complexity refers to the number of messages required to
reach a round of consensus. The smaller the complexity, the
more efficient is the consensus algorithm. The number of
messages in a normal case can differ from a leader failure
situation. Table 2 presents the communication complexity
of different protocols in normal situations and situations in
which the leader fails. A message’s communication com-
plexity affects the network’s scalability to some extent. If
the complexity is higher, the nodes need more messages to
accomplish consensus in one round. Therefore, algorithms in
networks that accommodate more nodes tend to have lower
complexity. In most consensus algorithms, the complexity
is higher when a network leader fails since all participating
nodes may require more rounds to have a new leader. The
best case of complexity is linear for both normal and leader
failure cases. In the category of PBFT and derivatives, PBFT’s
message complexity is O(n?) when a non-malicious primary
node operates without failure. Alternatively, it increases to
O(n?®) if the primary node fails (processing view-change
protocol). Since the leader is malicious, the protocol replaces
it with a new leader through a view-change that includes at
least 2f + 1 signed messages. A new leader then broadcasts
a new-view message containing proof of 2f + 1 signed view-
change messages. Validators will examine the new view-
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change message and broadcast it if it matches 2f + 1 view-
change messages. Overall, the view-change complexity is
O(n®) while the leader fails. In this category, HotStuff can
reduce the complexity to O(n) and guarantee responsiveness
by using threshold signatures, three rounds of voting, and a
chained structure to acknowledge a block [55]. HotStuff can
reach consensus pipelining without a complex view-change
mechanism and improves efficiency. In the category of FBA,
the complexity is determined by number of total nodes n and
number of nodes K that formalized the federation. In normal
case, complexity is O(nK ). Upper bound is O(n?) if and only
if K is close to n.

Scalability refers to the number of peering nodes that the
algorithm can process and implies an upper bound on the size
of the network. If a consensus protocol can support over 100
participants without losing network reliability, we conclude
its scalability is High. A range of 20 to 100 is considered
Medium, and anything lesser than 20 is considered to be
Low suitability for scalability. Regardless of the message
size and network environment, the scalability of a consortium
blockchain network is also determined by the communication
complexity. It can increase by reducing complexity. There-
fore, a consortium blockchain atop a consensus algorithm
with a lower complexity is always more scalable than a higher
one. In the category of Paxos and derivatives, Paxos provides
medium scalability, while Raft, its upgraded derivative, can
support a relatively large network with high scalability. In
the category of PBFT and derivatives, the total number of
broadcast messages grows quadratically with the increase
in the total number of nodes, leading to rapid super-linear
performance degradation. Therefore, PBFT is only suitable
for consortium blockchain and private blockchain with low
scalability. In the category of FBA, SCP emphasizes main-
taining the network’s activity and allows any node to join each
other’s trust list for transactions if it follows the policy. With
SCP, the Stellar network can run approximately 100 nodes
[70].

Decentralization implies that the existence of a relatively
neutral entity functioning as a central node. In a round of
reaching consensus, the node which decides the recording
of transactions on the distributed ledger is considered as the
central node [15]. All other nodes keep the data consistent
around it. In order to maintain the distributed state of the
system, the role of each node (including central node) is
subject to change. Therefore, we compare the degree of de-
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TABLE 2. Consensus Algorithm Comparison
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=) —
Protocol a0 ) = = % = = = = = g = =
1cS 8 = = = = = < o, = S o )
Metrics = =] 29 &2 = & & @) @) m RS m =]
& & @ 2 7 a z & 2 £ g 8 3
i 2 g & &
m
Complexity Nomal om?) Om 0m) o0m) o0m?) O Om) O®@mK) OmK) O(n) O(n) O3 0n?)
Complexity Leader Failed? - - om3) o0m®) o0m?) 0w?) 0ol OmK) OnK) - - - -
Scalability ® @® © ©) ® ® @ @ ® @ ® ® @
Decentralization ® @® O} ® @® @® ® O} @® ® ® ® ®
Network Model P P P P P P P P P S S A A
Latency O] © O] O} © O] © ® O] ©) O] O} O]
Throughput ® ® ©) ® O) @ @ ® ©] O O] ) ®
Resource Consumption ©) O] ® ® ® ©) ©) ©) O] ©) O] O ©
Crash Fault Tolerance 50% 50% 33% 33% 33% 33% 33% 20% 33% 50% 50% 33% 33%
Byzantine Fault Tolerance - - 33% 33% 33% 33% 33% 20% 33% - - 33% 33%

@ = high; ® = medium; © = low; S = Synchronous; P = Partially Synchronous; A = Asynchronous;

t Leader Failed case is only suitable for PBFT derivatives and FBA.

centralization of the algorithm according to the recording
node’s selection rules and the number of selected recording
nodes in each round. If all nodes are competitive while par-
ticipating in consensus reaching and the probability of each
node becoming the primary node is equal to each other, the
degree of decentralization is defined as High. For instance,
in Raft, every node has an equal chance of being elected by
submitting a proposal and getting the votes from other nodes.
If more than one node is selected as primary nodes or some
nodes have higher priorities than other nodes, the degree of
decentralization is assumed as Medium. The Low degree
of decentralization only exists in cases where the primary
nodes are pre-selected. i.e., the verification nodes in RPCA
are pre—configured in the entire network. In a consortium
blockchain, the degree of decentralization is flexible. It is
unnecessary to require all nodes to have equal permission to
participate in consensus reaching. To maintain the reliability
of a consortium blockchain, some consensus algorithms use
a low degree of decentralization as a tradeoff to reduce the
number of validator nodes and seek a higher communication
efficiency. Alternatively, the degree of decentralization can be
decided by committee members as a business strategy.

The network model is an important metric that defines the
ability of different message latencies to limit the blockchain
network reliability. In general, there are three types of net-
work models: (1) Synchronous: There is a known upper
bound A on the latency of message communication between
all nodes. The synchronous model offers an ideal communi-
cation pattern, which is hardly visible in real life but plays
an important role in the theoretical study of distributed sys-
tems, and many early distributed consistency algorithms were
designed under the assumption of synchronous networks. (2)
Asynchronous: The above-mentioned upper bounds A does
not exist, so the asynchronous model is more in line with
the realistic Internet environment. Asynchronous is a more
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general case than synchronous. An algorithm that works for
an asynchronous system can also be used for a synchronous
system, but the converse does not hold. (3) Partially Syn-
chronous: This model offers a communication pattern be-
tween the synchronous model and asynchronous model [64].
In the partially synchronous model, it is assumed that there
is a globally stable clock GST (Global Stabilization Time),
the message arrives in A time and the entire system may
be in the asynchronous state before GST, but after GST, the
whole system can return to a synchronous state. The timing
assumption of the partial synchronization model is more in
line with the real-world need for consensus algorithms, i.e.,
consensus can always be reached in a synchronized state;
but once the network goes down, consensus may enter a
period of blocking until it returns to normal. In addition, based
on the relationships of the network models (synchronous C
partially synchronous C asynchronous), if a consensus fully
supports an asynchronous network, it theoretically supports
synchronous and partially synchronous networks. Thus, a
fully asynchronous consensus protocol provides high relia-
bility.

V. PERFORMANCE
This section provides an assessment of selected consensus
algorithms regarding performance efficiency. In a consortium
blockchain, domain services and transaction types vary. This
creates a need for an efficient backbone for applications with
low latency, high throughput, and low resource consumption.
Table 2 shows evaluation results.

Latency is defined as the time elapsed from the moment
a node submits a transaction to the time that the transaction
is confirmed by blockchain. High latency means longer con-
firmation times for transactions, which can be an issue for
applications that require faster processing times. On the other
hand, low latency can provide faster confirmation times and
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improve the user experience. Thus, it is critical to consider
the latency of a consensus algorithm when evaluating per-
formance of blockchain. In this study, latency is classified
as High, Medium, or Low [16]. High latency is in the
magnitude of minutes, Medium is in seconds, and Low is
in milliseconds.

Throughput refers to the block generation rate and the
number of Transactions Per Second (TPS) the system can
process. Block generation is expressed as time required for
the entire process starting from the time when transactions
are packaged into blocks up to the time when consensus
is reached. TPS is determined by the size of block and
block generation speed. TPS is calculated as the number
of transactions in the block divided by the length of time
required for the generation of the current block. We classify
throughput into three categories. A protocol can provide >
2,000 TPS is classified as a High throughput protocol. A TPS
between 1,500 to 2,000 indicates Medium throughput, and
a TPS < 1,500 indicates a Low throughput. In the category
of PBFT and derivatives, a blockchain implementation with
BFT-SMART protocol by Symbiont can reach a throughput
of 8000 TPS in a 4-node network cluster, which meets the ex-
pected performance of the original paper [46]. In the category
of FBA, the advantage of RPCA algorithm is its relatively
high performance and efficiency. Ripple can generate a block
every three seconds with a throughput that reaches 1500 TPS.

Resource consumption refers to the computing power,
memory, input and output, and energy resources that each
node consumes while reaching a consensus. Communication
complexity is a theoretical proxy of resource consumption.
Resource consumption is classified as High, Medium, or
Low [16]. High exists in some consensus algorithms that
exhaust large resources for competing for a leader. This cat-
egory only exists in public blockchains, for instance, when
a node runs PoW it competes for a hash computation to get
the transactions to be committed, including using a graphic
card to acquire a high computing ability and thus is a drain
on resources. Consensus algorithms defined as Medium in
terms of their resource consumption usually are not a drain
on resources when competing as a leader, but still need
some due to a high communication complexity. Low resource
consumption algorithms are ones that have an upper bound
on communication complexity in any condition and do not
require extensive computation to compete for a leader.

VI. SECURITY

This section provides an assessment of consensus algorithms
regarding system security elaborated by fault tolerance. In
terms of security, public blockchains face a high diversity of
attack vectors. For instance, there are various attacks towards
PoW, such as 51% attack, eclipse attack, dust attack, empty
block attack, selfish mining attack, block withholding attack,
etc. [72]-[79].However, the consensus protocols adopted in
the consortium blockchains are more fault-tolerant and more
controllable since they can detect and tolerate a certain num-
ber of malicious nodes. Therefore, consortium blockchains
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face relatively fewer security attacks and relatively low attack
diversity. Therefore, only the impact of fault tolerance will be
discussed in this section. The ability of a blockchain system
to maintain uninterrupted operations when one or more of its
components fail is intrinsic to its nature. Table 2 presents a
comparison of selected consensus algorithms.

Fault Tolerance is essential to security, and denotes the
capacity of a distributed network to minimize the severity and
frequency of network incidents, continue operations under
stress, and recover as quickly as possible. We define security
as the tolerance of the distributed network to malicious attacks
or the amount of Byzantine behavior that the network can
resist. Robustness is the ability of the network to maintain
its performance in face of failures, or changes in topology or
load. We consider two types of failures: Byzantine failures are
those where some network participants may exhibit malicious
behavior, such as sending conflicting messages, while crash
failures are some participants are outage or unreachable.

In the category of Paxos and derivatives, Paxos enables a
distributed system to reach consensus when the number of
non-failure nodes is greater than half of the total nodes. Raft
was inspired by Paxos and its fault tolerance is very similar
to Paxos. Neither Paxos nor Raft provide Byzantine fault
tolerance. In the category of PBFT and derivatives, PBFT
can tolerate both non-Byzantine errors and Byzantine errors,
simultaneously, by sending broadcasts to the entire network in
each round and allowing each node to participate in electing
the primary node. This advanced mechanism ensures that
PBFT has the capabilities to maintain consistency, ensure
availability, and enable anti-fraud. RBFT was proposed for
better resiliency during the process of Byzantine fault toler-
ance. In earlier BFT algorithms such as PBFT, Prime [80],
Aardvark [81], and Spinning [82], if the primary node is
malicious, the whole system’s performance is degraded. The
RBFT model proposes executing multiple PBFT protocol
instances in parallel using multi-core machines, which can
easily detect malicious nodes and prevent performance degra-
dation. If one or more Byzantine faulty nodes exist in the
blockchain network, it has been shown that the maximum
performance degradation of RBFT is 3%, which is better
than other protocols; for instance, Prime is 80%, Aardvark
is 87%, and Spinning is 99% [40]. HotStuff’s responsiveness
enables nodes to quickly confirm blocks under normal net-
work conditions and can wait longer to confirm under limited
network conditions. Overall, the algorithms in this category
have the same level of fault tolerance on both crash and
Byzantine faults. In the category of FBA, the fault tolerance
of SCP is the same lever as PBFT family. However, the fault
tolerance of RPCA is lower than that of SCP and PBFT-
like algorithms since the verification node is pre-configured,
and the fault tolerance is bound to the number of verification
nodes. In the category of Randomized, POET and Ouroboros
provide the same ability to tolerate crash faults. HB-BFT and
Dumbo have the same level of fault tolerance with PBFT and
derivatives on both crash and Byzantine faults.
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VII. CONCLUDING REMARKS

Our intent for this paper was to carry out groundwork that
informs researchers, developers, and the blockchain commu-
nity at large of the current landscape of consensus methodolo-
gies and technologies and remaining challenges. The choice
of a consensus algorithm has an enormous impact on the
performance of a blockchain application. Therefore, ongo-
ing research into the design and implementation of consen-
sus algorithms will advance and facilitate the adoption of
blockchain for diverse applications. Regardless of the type of
blockchain used and its applications, a consensus algorithm
is pivotal to the blockchain operation and must therefore
be carefully designed. The primary research challenges that
need to be addressed in the consensus mechanism domain
for consortium blockchain are: (1) Scalability enhancement:
While the consortium blockchain offers limited membership,
the issue of scalability in a consortium blockchain is crit-
ical. As we discussed, the size of a network has implica-
tions for parameters such as fault tolerance that impact the
blockchain’s efficiency. As business needs grow, the num-
ber of access nodes required by the platform may increase
to keep pace with the platform’s expansion. Proactive ap-
proaches to building consortium blockchains that adapt to
changing business and platform expansion needs must be
considered to strengthen scalability. (2) Algorithmic meld-
ing: As applications and platforms evolve, consensus algo-
rithms may require more flexibility in adapting to changing
environments. The evolution of applications and platforms
may introduce logical, but intricate, requirements for fusion
between algorithms. Therefore, integrating different types of
consensus mechanism algorithms in the future poses a distinct
challenge to interoperability. (3) Privacy-preservation: The
consortium blockchain needs authentication for participating
nodes, which reduces the probability of possible attacks, to
a certain extent. Nevertheless, we still need to consider the
security and privacy of data on the consortium chain. The use
of cryptography to ensure security and privacy of data on the
blockchain while still conforming to the central paradigm of
blockchain decentralization will be a tradeoff to consider. (4)
Performance improvement: The potential to further several
performance factors, such as increase in throughput, reduc-
tion in latency, and reduction in computational requirements
for consensus algorithms must be considered. Each of these
factors impacts the scalability of the blockchain. Therefore,
ensuring increasing performance while reducing the impact
on scalability is a challenge. (5) Searching and storing
optimization: While the original philosophy of blockchain
called for implementations to build a distributed ledger, the
expectations for blockchain networks have evolved into data
retrieval over the years. In this use scenario, a blockchain
ledger is more like a distributed database without the ca-
pability of deleting and updating operations due to the im-
mutability property of blockchain. Therefore, the consensus
mechanisms that are built for blockchain should also consider
whether the data storing and searching can be optimized
accordingly. These challenges broadly identify the various
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areas of improvement for consortium blockchain algorithms.
However, since these protocols are still under development
and the applications leveraging these algorithms are contin-
uously being refined, the scope of challenges for consensus
algorithms in consortium blockchain will continue to be a
work in progress.

ACKNOWLEDGMENT
The research is partially supported by FHWA EAR
693JJ320C000021.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Cryp-
tography Mailing list at https://metzdowd.com, Mar. 2009.

[2] M. Swan, Blockchain: blueprint for a new economy.
edition ed., 2015.

[3] M. Dotan, Y.-A. Pignolet, S. Schmid, S. Tochner, and A. Zohar, “Sok:
cryptocurrency networking context, state-of-the-art, challenges,” in Pro-
ceedings of the 15th International Conference on Availability, Reliability
and Security, pp. 1-13, 2020.

[4] G.Wood et al., “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1-32,2014.

[5] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the thirteenth EuroSys conference, pp. 1—
15, 2018.

[6] HyperLedger, “Case study: How walmart brought unprecedented trans-
parency to the food supply chain with hyperledger fabric,” Mar 2019.

[7]1 HyperLedger, “Case study: How culedger protects credit unions against
fraud with hyperledger indy,” 2020.

[8] HyperLedger, “When hyperledger sawtooth met kubernetes - simplifying
enterprise blockchain adoption,” 2020.

[9] Libra Association Members, “Libra White Paper | Blockchain, Associa-
tion, Reserve,” Apr. 2020.

[10] H. Rathore, A. Mohamed, and M. Guizani, “A survey of blockchain
enabled cyber-physical systems,” Sensors, vol. 20, no. 1, p. 282, 2020.

[11] S. T. Aras and V. Kulkarni, “Blockchain and its applications—a detailed
survey,” International Journal of Computer Applications, vol. 180, no. 3,
pp. 29-35, 2017.

[12] F. Casino, T. K. Dasaklis, and C. Patsakis, “A systematic literature review
of blockchain-based applications: Current status, classification and open
issues,” Telematics and informatics, vol. 36, pp. 55-81, 2019.

[13] Y. Zou, T. Meng, P. Zhang, W. Zhang, and H. Li, “Focus on blockchain: A
comprehensive survey on academic and application,” IEEE Access, vol. 8,
pp. 187182187201, 2020.

[14] O. Dib, K.-L. Brousmiche, A. Durand, E. Thea, and E. B. Hamida,
“Consortium blockchains: Overview, applications and challenges,” Inter-
national Journal On Advances in Telecommunications, vol. 11, no. 1&2,
pp. 51-64, 2018.

[15] G.-T. Nguyen and K. Kim, “A survey about consensus algorithms used
in blockchain,” Journal of Information processing systems, vol. 14, no. 1,
pp. 101-128, 2018.

[16] M. Salimitari and M. Chatterjee, “A survey on consensus protocols in
blockchain for iot networks,” arXiv preprint arXiv:1809.05613, 2018.

[17] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed
consensus protocols for blockchain networks,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 2, pp. 1432-1465, 2020.

[18] C. Cachin and M. Vukolic, “Blockchain consensus protocols in the wild,”
ArXiv, vol. abs/1707.01873, 2017.

[19] M.S. Ferdous, M. Chowdhury, M. A. Hoque, and A. Colman, ‘““Blockchain
consensus algorithms: A survey,” arXiv: Distributed, Parallel, and Cluster
Computing, 2020.

[20] B. Bellaj, A. Ouaddah, E. Bertin, N. Crespi, and A. Mezrioui, “Sok: a
comprehensive survey on distributed ledger technologies,” in ICBC 2022:
IEEE International Conference on Blockchain and Cryptocurrency, pp. 1—
16, IEEE, 2022.

[21] J. B. Bernabe, J. L. Canovas, J. L. Hernandez-Ramos, R. T. Moreno, and
A. Skarmeta, “Privacy-preserving solutions for blockchain: Review and
challenges,” IEEE Access, vol. 7, pp. 164908-164940, 2019.

O’Reilly, first

VOLUME 11, 2023



Wei et al.: SoK: A Taxonomy for Critical Analysis of Consensus Mechanisms in Consortium Blockchain

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Y. Mao, S. Deb, S. B. Venkatakrishnan, S. Kannan, and K. Srinivasan,
“Perigee: Efficient peer-to-peer network design for blockchains,” in Pro-
ceedings of the 39th Symposium on Principles of Distributed Computing,
pp. 428-437, 2020.

H.-Y. Paik, X. Xu, H. D. Bandara, S. U. Lee, and S. K. Lo, “Analysis
of data management in blockchain-based systems: From architecture to
governance,” leee Access, vol. 7, pp. 186091-186107, 2019.

M. Szydlo, “Merkle tree traversal in log space and time,” in International
Conference on the Theory and Applications of Cryptographic Techniques,
pp. 541-554, Springer, 2004.

H. L. Pham, T. H. Tran, T. D. Phan, V. T. D. Le, D. K. Lam, and
Y. Nakashima, “Double sha-256 hardware architecture with compact mes-
sage expander for bitcoin mining,” IEEE Access, vol. 8, pp. 139634—
139646, 2020.

H. Vranken, “Sustainability of bitcoin and blockchains,” Current opinion
in environmental sustainability, vol. 28, pp. 1-9, 2017.

D. Yaga, P. Mell, N. Roby, and K. Scarfone, ‘“Blockchain technology
overview,” arXiv preprint arXiv:1906.11078, 2019.

C. Dods, N. P. Smart, and M. Stam, “Hash based digital signature
schemes,” in Cryptography and Coding (N. P. Smart, ed.), p. 96-115,
Springer Berlin Heidelberg, 2005.

S. Chandra, S. Paira, S. S. Alam, and G. Sanyal, “A comparative survey
of symmetric and asymmetric key cryptography,” in 2014 international
conference on electronics, communication and computational engineering
(ICECCE), pp. 83-93, IEEE, 2014.

D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital
signature algorithm (ecdsa),” International journal of information security,
vol. 1, no. 1, pp. 36-63, 2001.

A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of bft protocols,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pp. 31-42, 2016.

A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A prov-
ably secure proof-of-stake blockchain protocol,” in Annual international
cryptology conference, pp. 357-388, Springer, 2017.

D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in USENIX Annual Technical Conference, 2014.

M. Castro, B. Liskov, et al., “Practical byzantine fault tolerance,” in OsDI,
vol. 99, pp. 173-186, 1999.

L. Lamport, “‘Paxos made simple,” ACM SIGACT News (Distributed Com-
puting Column) 32, 4 (Whole Number 121, December 2001), pp. 51-58,
2001.

L. Baird, B. Gross, and T. Donald, “Hedera consensus service,” Hedera
Hashgraph, 2020.

R. Saltini and D. Hyland-Wood, “Ibft 2.0: A safe and live variation of the
ibft blockchain consensus protocol for eventually synchronous networks,”
arXiv preprint arXiv:1909.10194, 2019.

E. Buchman, Tendermint: Byzantine fault tolerance in the age of
blockchains. PhD thesis, University of Guelph, 2016.

J. Kreps, N. Narkhede, J. Rao, et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, vol. 11, pp. 1-7,
2011.

P.-L. Aublin, S. B. Mokhtar, and V. Quéma, “Rbft: Redundant byzantine
fault tolerance,” in 2013 IEEE 33rd International Conference on Dis-
tributed Computing Systems, pp. 297-306, IEEE, 2013.

F. Muratov, A. Lebedev, N. Iushkevich, B. Nasrulin, and M. Takemiya,
“Yac: Bft consensus algorithm for blockchain,” arXiv preprint
arXiv:1809.00554, 2018.

L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi, “On security
analysis of proof-of-elapsed-time (poet),” in International Symposium on
Stabilization, Safety, and Security of Distributed Systems, pp. 282-297,
Springer, 2017.

T. Crain, V. Gramoli, M. Larrea, and M. Raynal, “Dbft: Efficient leaderless
byzantine consensus and its application to blockchains,” in 20/8 IEEE 17th
International Symposium on Network Computing and Applications (NCA),
pp. 1-8, IEEE, 2018.

D. Schwartz, N. Youngs, A. Britto, ef al., “The ripple protocol consensus
algorithm,” Ripple Labs Inc White Paper, vol. 5, no. 8, p. 151, 2014.

D. Mazieres, “The stellar consensus protocol: A federated model for
internet-level consensus,” Stellar Development Foundation, vol. 32, pp. 1—
45, 2015.

A. Bessani, J. Sousa, and E. E. Alchieri, “State machine replication for
the masses with bft-smart,” in 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pp. 355-362, IEEE,
2014.

VOLUME 11, 2023

[47]

[48]

[49]
[50]

[51]
[52]

[53]
[54]

[55]

[56]

[57]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

S. D. Angelis, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and
V. Sassone, “Pbft vs proof-of-authority: Applying the cap theorem to
permissioned blockchain,” in Italian Conference on Cybersecurity, 2018.
L. Lamport, R. E. Shostak, and M. C. Pease, ‘““The byzantine generals
problem,” in Concurrency: the Works of Leslie Lamport, pp. 203-226,
ACM, 2019.

Wikipedia, “Adversary (cryptography),” Dec 2020. Page Version ID:
995747901.

S. King and S. Nadal, “‘Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake,” self-published paper, August, vol. 19, no. 1, 2012.

V. Foundation, ‘““Vechain whitepaper,” Dec 2019.

K. Olson, M. Bowman, J. Mitchell, S. Amundson, D. Middleton, and
C. Montgomery, ‘“Sawtooth: an introduction,” The Linux Foundation,
2018.

S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, ‘“Proofs of
space,” in Annual Cryptology Conference, pp. 585-605, Springer, 2015.
J. Kwon, “Tendermint: Consensus without mining,” Draft v. 0.6, fall,
vol. 1, no. 11, 2014.

M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, ‘“Hotstuff:
Bft consensus with linearity and responsiveness,” in Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, pp. 347—
356, 2019.

F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance
broadcast for primary-backup systems,” in 2011 IEEE/IFIP 41st Interna-
tional Conference on Dependable Systems & Networks (DSN), pp. 245—
256, IEEE, 2011.

G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Reiter,
D.-A. Seredinschi, O. Tamir, and A. Tomescu, ‘‘Sbft: a scalable and decen-
tralized trust infrastructure,” in 2019 49th Annual IEEE/IFIP international
conference on dependable systems and networks (DSN), pp. 568-580,
IEEE, 2019.

E. Alchieri, F. Dotti, O. M. Mendizabal, and F. Pedone, ‘“Reconfiguring
parallel state machine replication,” in 2017 IEEE 36th Symposium on
Reliable Distributed Systems (SRDS), pp. 104-113, IEEE, 2017.

J. Sousa and A. Bessani, “From byzantine consensus to bft state machine
replication: A latency-optimal transformation,” in 2012 Ninth European
Dependable Computing Conference, pp. 37-48, IEEE, 2012.

C. Cachin, “Yet another visit to paxos,” IBM Research, Zurich, Switzer-
land, Tech. Rep. RZ3754, 2009.

T.-H. H. Chan, R. Pass, and E. Shi, “Pala: A simple partially synchronous
blockchain.,” IACR Cryptol. ePrint Arch., vol. 2018, p. 981, 2018.

C. Cachin and M. Vukolic, “Blockchain consensus protocols in the wild,”
ArXiv, vol. abs/1707.01873, 2017.

M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li, D. Malkhi,
O. Naor, D. Perelman, and A. Sonnino, ‘“‘State machine replication in the
libra blockchain,” The Libra Assn., Tech. Rep, 2019.

C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of
partial synchrony,” Journal of the ACM (JACM), vol. 35, no. 2, pp. 288—
323, 1988.

B. Chase and E. MacBrough, “Analysis of the xrp ledger consensus
protocol,” arXiv preprint arXiv:1802.07242, 2018.

D. Mazieres, G. Losa, and E. Gafni, ““Simplified scp,” 2019.

V. Costan and S. Devadas, “Intel sgx explained,” Cryptology ePrint
Archive, 2016.

M. Stadler, “Publicly verifiable secret sharing,” in International Con-
ference on the Theory and Applications of Cryptographic Techniques,
pp. 190-199, Springer, 1996.

B.Guo,Z. Lu, Q. Tang, J. Xu, and Z. Zhang, ““Dumbo: Faster asynchronous
bft protocols,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pp. 803-818, 2020.

C. Berger and H. P. Reiser, “Scaling byzantine consensus: A broad analy-
sis,” in Proceedings of the 2nd workshop on scalable and resilient infras-
tructures for distributed ledgers, pp. 13-18, 2018.

G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Reiter,
D.-A. Seredinschi, O. Tamir, and A. Tomescu, ‘‘Sbft: a scalable and decen-
tralized trust infrastructure,” in 2019 49th Annual IEEE/IFIP international
conference on dependable systems and networks (DSN), pp. 568-580,
IEEE, 2019.

R. Zhang, R. Xue, and L. Liu, ““Security and privacy on blockchain,” ACM
Computing Surveys (CSUR), vol. 52, no. 3, pp. 1-34, 2019.

M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty, D. Nyang, and
D. Mohaisen, “Exploring the attack surface of blockchain: A comprehen-
sive survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3,
pp. 1977-2008, 2020.



Wei et al.: SoK: A Taxonomy for Critical Analysis of Consensus Mechanisms in Consortium Blockchain

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

N. Anita and M. Vijayalakshmi, “Blockchain security attack: a brief sur-
vey,” in 2019 10th International Conference on Computing, Communica-
tion and Networking Technologies (ICCCNT), pp. 1-6, IEEE, 2019.

C. Ye, G. Li, H. Cai, Y. Gu, and A. Fukuda, “Analysis of security in
blockchain: Case study in 51%-attack detecting,” in 2018 5th International
conference on dependable systems and their applications (DSA), pp. 15—
24, IEEE, 2018.

D. K. Tosh, S. Shetty, X. Liang, C. A. Kamhoua, K. A. Kwiat, and
L. Njilla, “Security implications of blockchain cloud with analysis of block
withholding attack,” in 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), pp. 458—467, IEEE, 2017.
S. Sayeed and H. Marco-Gisbert, “Assessing blockchain consensus and
security mechanisms against the 51% attack,” Applied sciences, vol. 9,
no. 9, p. 1788, 2019.

M. Conti, E. S. Kumar, C. Lal, and S. Ruj, “A survey on security and
privacy issues of bitcoin,” IEEE Communications Surveys & Tutorials,
vol. 20, no. 4, pp. 3416-3452, 2018.

R. C. Lunardi, R. A. Michelin, H. C. Nunes, C. V. Neu, A. F. Zorzo, and
S. S. Kanhere, “Consensus algorithms on appendable-block blockchains:
impact and security analysis,” Mobile Networks and Applications, vol. 27,
no. 4, pp. 1408-1420, 2022.

Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Prime: Byzantine replication
under attack,” IEEE transactions on dependable and secure computing,
vol. 8, no. 4, pp. 564-577, 2010.

A. Clement, E. Wong, L. Alvisi, M. Dahlin, M. Marchetti, et al., “Making
byzantine fault tolerant systems tolerate byzantine faults,” in Proceedings
of the 6th USENIX symposium on Networked systems design and imple-
mentation, The USENIX Association, 2009.

G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “Spin one’s
wheels? byzantine fault tolerance with a spinning primary,” in 2009 28th
IEEE International Symposium on Reliable Distributed Systems, pp. 135—
144, IEEE, 2009.

VOLUME 11, 2023



	Introduction
	Building Blocks
	Blockchain Overview
	Types of blockchain networks
	Consensus Algorithms
	Consensus algorithm classification

	Taxonomy of Consensus Mechanisms
	Paxos and derivatives
	Paxos
	Raft

	PBFT and derivatives
	Practical Byzantine Fault Tolerance (PBFT)
	Redundant Byzantine Fault Tolerance (RBFT)
	BFT-SMART
	HotStuff
	LibraBFT

	Federated Byzantine Agreement
	RPCA
	Stellar Consensus Protocol (SCP)

	Randomized consensus mechanisms
	PoET
	Ouroboros
	HoneyBadgerBFT (HB-BFT)
	Dumbo

	Assessment Methodology

	Reliability
	Performance
	Security
	Concluding Remarks
	REFERENCES

